Applications of random forest feature selection for fine‐scale genetic population assignment
نویسندگان
چکیده
Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with FST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon (Salmo salar) and a published SNP data set for Alaskan Chinook salmon (Oncorhynchus tshawytscha). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than FST-selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using FST-selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.
منابع مشابه
A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملFine-scale genetic structure of a long-lived reptile reflects recent habitat modification.
Anthropogenic habitat fragmentation--ubiquitous in modern ecosystems--has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersa...
متن کاملRandom Forest for Bioinformatics
Modern biology has experienced an increasing use of machine learning techniques for large scale and complex biological data analysis. In the area of Bioinformatics, the Random Forest (RF) [6] technique, which includes an ensemble of decision trees and incorporates feature selection and interactions naturally in the learning process, is a popular choice. It is nonparametric, interpretable, effic...
متن کاملApproximate False Positive Rate Control in Selection Frequency for Random Forest
Random Forest has become one of the most popular tools for feature selection. Its ability to deal with high-dimensional data makes this algorithm especially useful for studies in neuroimaging and bioinformatics. Despite its popularity and wide use, feature selection in Random Forest still lacks a crucial ingredient: false positive rate control. To date there is no efficient, principled and comp...
متن کاملEmpirical evaluation of feature selection methods in classification
In the paper, we present an empirical evaluation of five feature selection methods: ReliefF, random forest feature selector, sequential forward selection, sequential backward selection, and Gini index. Among the evaluated methods, the random forest feature selector has not yet been widely compared to the other methods. In our evaluation, we test how the implemented feature selection can affect ...
متن کامل